
ILAng: A Modeling and Verification
Platform for SoCs Using

Instruction-Level Abstractions

Bo-Yuan Huang(B), Hongce Zhang,
Aarti Gupta, and Sharad Malik

Princeton University, Princeton, USA
{byhuang,hongcez,aartig,sharad}@princeton.edu

Abstract. We present ILAng, a platform for modeling and verification
of systems-on-chip (SoCs) using Instruction-Level Abstractions (ILA).
The ILA formal model targeting the hardware-software interface enables
a clean separation of concerns between software and hardware through
a unified model for heterogeneous processors and accelerators. Top-
down it provides a specification for functional verification of hardware,
and bottom-up it provides an abstraction for software/hardware co-
verification. ILAng provides a programming interface for (i) constructing
ILA models (ii) synthesizing ILA models from templates using program
synthesis techniques (iii) verifying properties on ILA models (iv) behav-
ioral equivalence checking between different ILA models, and between an
ILA specification and an implementation. It also provides for translat-
ing models and properties into various languages (e.g., Verilog and SMT
LIB2) for different verification settings and use of third-party verifica-
tion tools. This paper demonstrates selected capabilities of the platform
through case studies. Data or code related to this paper is available
at: [9].

1 Introduction

Modern computing platforms are increasingly heterogeneous, having both pro-
grammable processors and application-specific accelerators. These accelerator-
rich platforms pose two distinct verification challenges. The first challenge is
constructing meaningful specifications for accelerators that can be used to verify
the implementation. Higher-level executable models used in early design stages
are not suitable for this task. The second challenge is to reason about hardware-
software interactions from the viewpoint of software. The traditional approach
in system-level/hardware modeling using detailed models, e.g., Register-Transfer
Level (RTL) descriptions, is not amenable to scalable formal analysis.

This work was supported by the Applications Driving Architectures (ADA) Research
Center, a JUMP Center co-sponsored by SRC and DARPA. This research is also funded
in part by NSF award number 1628926, XPS: FULL: Hardware Software Abstractions:
Addressing Specification and Verification Gaps in Accelerator-Oriented Parallelism,
and the DARPA POSH Program Project: Upscale: Scaling up formal tools for POSH
Open Source Hardware.

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 351–357, 2019.
https://doi.org/10.1007/978-3-030-17462-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-17462-0_21

352 B.-Y. Huang et al.

The Instruction-Level Abstraction (ILA) has been proposed to address these
challenges [4]. The ILA model is a uniform formal abstraction for processors
and accelerators that captures their software-visible functionality as a set of
instructions. It facilitates behavioral equivalence checking of an implementation
against its ILA specification. This, in turn, supports accelerator upgrades using
the notion of ILA compatibility similar to that of ISA compatibility for proces-
sors [4]. It also enables firmware/hardware co-verification [3]. Further, it enables
reasoning about memory consistency models for system-wide properties [8].

In this paper, we present ILAng, a platform for Systems-on-chip (SoC) verifi-
cation where ILAs are used as the formal model for processors and accelerators.
ILAng provides for (i) ILA modeling and synthesis, (ii) ILA model verification,
and (iii) behavioral equivalence checking between ILA models, and between an
ILA specification and an implementation. The tool is open source and available
online on https://github.com/Bo-Yuan-Huang/ILAng.

Fig. 1. ILAng work flow

2 The ILAng Platform

Figure 1 illustrates the modeling and verification capabilities of ILAng.

1. It allows constructing ILA formal models using a programming interface.
It also allows semi-automated ILA synthesis using program synthesis tech-
niques [5] and a template language [6].

2. It provides a set of utilities for ILA model verification, such as SMT-based
transition unrolling and bounded model checking. Further, ILAng is capa-
ble of translating ILA formal models into various languages for verification,
including Verilog, C, C++, and SMT LIB2, targeting other off-the-shelf ver-
ification tools and platforms.

3. It supports behavioral equivalence checking between ILA models and between
an ILA specification and an implementation based on the standard commu-
tative diagram approach [1].

https://github.com/Bo-Yuan-Huang/ILAng

ILAng: A Modeling and Verification Platform for SoCs Using ILAs 353

2.1 Background

ILA. The ILA is a formal, uniform, modular, and hierarchical model for mod-
eling both programmable processors and accelerators [4].

An ILA model is modular (state updates defined per instruction) and can
be viewed as a generalization of the processor ISA in the heterogeneous context,
where the commands on an accelerator’s interface are defined as instructions.
Generally, these appear as memory-mapped IO (MMIO) instructions in pro-
grams. The MMIO instruction lacks the actual semantics of what the instruction
is doing in the accelerator; the ILA instruction captures exactly that.

It is an operational model that captures updates to program-visible states
(i.e., states that are accessible or observable by programs). For processors, these
include the architectural registers, flag bits, data, and program memory. An ADD
instruction (R1 = R2+R3), for example, of a processor defines the update to the
R1 program-visible register. For accelerators, the program visible state includes
memory-mapped registers, internal buffers, output ports to on-chip interconnect,
etc. An ILA instruction for a crypto-accelerator could define the setting of an
encryption key or even the encryption of an entire block using this key.

An ILA model is hierarchical, where an instruction at a high level can
be expressed as a program of child-instructions (like micro-instructions). For
example, the START ENCRYPT instruction of a crypto-accelerator can be described
as a program of reading data, encrypting it, and writing the result.

2.2 Constructing ILAs

ILAng provides a programming interface to define ILA models. For each com-
ponent, the program-visible (aka architectural) states are specified. For each
instruction, the state updates are specified independently as transition relations.
Currently, ILAng supports state variables of type Boolean, bit-vector, and array.
Uninterpreted functions are also supported for modeling complex operations.

Synthesis Capability. To alleviate the manual effort in constructing ILAs,
ILAng provides a synthesis engine for synthesizing ILAs from a partial descrip-
tion called a template [6] using program synthesis techniques [5]. This is shown
as Block 1 in Fig. 1. The synthesis algorithm requires two user inputs: an ILA
template, and a design simulator/emulator. A template is a partially defined
ILA model that specifies the program-visible states, the set of instructions, and
also the possible operations for each instruction. The simulator can be a soft-
ware/hardware prototype and is used as an oracle during ILA synthesis. The
synthesis algorithm fills in the missing parts in the set of instructions.

2.3 Verification Using ILAs

The ILA formal model is a modular (per instruction) transition system, enabling
the use of verification techniques such as model checking. We now discuss a
selected list of verification capabilities provided by ILAng.

354 B.-Y. Huang et al.

ILA Model Verification. As shown in Block 2 in Fig. 1, ILAng supports
verification of user-provided safety properties on ILAs. It generates verification
targets (including the design and property assertions) into different languages,
as discussed in Sect. 2.4.

Behavioral Equivalence Checking. The modularity and hierarchy in the
ILA models simplify behavioral equivalence checking through decomposition.
Based on the standard commutative diagram approach [1], behavioral equiva-
lence checking in ILAng supports two main settings: (i) ILA vs. ILA, and (ii)
ILA vs. finite state machine (FSM) model (e.g., RTL implementation). As shown
in Blocks 3a and 3b in Fig. 1, ILAng takes as input the two models (two ILA
models, or an ILA model and an implementation model) and the user-provided
refinement relation. The refinement relation specifies:

1. how to apply an instruction (e.g., instruction decode),
2. how to flush the state machine if required (e.g., stalling), and
3. how to identify if an instruction has completed (e.g., commit point).

The refinement map is then used with the two models to generate the property
assertions using the standard commutative diagram approach [1]. The verifica-
tion targets (the design and property assertions) are then generated in Verilog
or SMT LIB2 for further reasoning, as described in Sect. 2.4.

SMT-Based Verification Utilities

Unrolling. Given an ILA, ILAng provides utilities to unroll the transition rela-
tion up to a finite bound, with options for different encodings and simplifications.
Users can unroll a sequence of given instructions with a fixed instruction order-
ing. They can also unroll all possible instructions as a monolithic state machine.

Bounded Model Checking (BMC). With the unrolling utility, ILAng supports
BMC of safety properties using an SMT solver. Users can specify initial condi-
tions, invariants, and the properties. They can use a fixed bound for BMC or
use on-the-fly BMC that iteratively increases the bound.

2.4 Generating Verification Targets

To utilize off-the-shelf verification tools, ILAng can export ILA models into
different languages, including Verilog, C, C++, and SMT-LIB2.

Verilog. Many hardware implementations use RTL descriptions in Verilog. To
support ILA vs. FSM equivalence checking, ILAng supports exporting ILA to
Verilog. This also allows the use of third-party verification tools, since most such
tools support Verilog. The memory module in the exported ILA can be config-
ured as internal registers or external memory modules for different requirements.

ILAng: A Modeling and Verification Platform for SoCs Using ILAs 355

C/C++. Given an ILA model, ILAng can generate a hardware simulator (in C
or C++) for use in system/software development. This simulator can be verified
against an implementation to check that it is a reliable executable model.

SMT LIB2. The ILAng platform is integrated with the SMT solver z3 [2]. It
can generate SMT formulas for the transition relation and other verification
conditions using the utilities described in Sect. 2.3.

3 Tutorial Case Studies

We demonstrate the applicability of ILAng through two case studies discussed
in this section.1 Table 1 provides information for each case study, including
implementation size, ILA (template) size, synthesis time, and verification time
(Ubuntu 18.04 VM on Intel i5-8300H with 2 GB memory). Note that these case
studies are for demonstration, ILAng is capable of handling designs with signif-
icant complexity, as discussed and referenced in Sect. 4.

Table 1. Experimental Results

Design Statistics ILA Verif.

Reference Ref. Size
of Insts.
(parent/child)

ILA Size
Synth.
Time (s)

Time (s)

AESV RTL Impl. (Verilog) 1756 8/5 324† 110 63

AESC Software Model (C) 328 8/7 292† 63

PipeI RTL Impl. (Verilog) 218 4/0 78 - 25

† ILA synthesis template. Note: sizes are LoC w.r.t the corresponding language.

3.1 Advanced Encryption Standard (AES)

In this case study, we showcase the synthesis engine (Sect. 2.2) and the verifica-
tion utilities (Sect. 2.3) for ILA vs. ILA behavioral equivalence checking.

We synthesized two ILAs for the AES crypto-engine, AESC and AESV , based
on C and Verilog implementations respectively. They have the same instruction
set, but with differences in block-level and round-level algorithms. As shown in
Table 1, the sizes of ILAs (synthesis templates) are significantly smaller than the
final RTL implementation, making this an attractive entry point for verification.

The equivalence between AESC and AESV is checked modularly, i.e., per
instruction. Table 1 shows the verification time for checking behavioral equiva-
lence using the SMT solver z3.

3.2 A Simple Instruction Execution Pipeline

In this case study, we demonstrate the steps in manually defining an ILA
(Sect. 2.2) and exporting it in Verilog (Sect. 2.4) for ILA vs. FSM behavioral
equivalence checking using existing hardware verification tools.
1 All tutorial case studies are available in the submitted artifact and on GitHub.

356 B.-Y. Huang et al.

This pipeline case study is a simple version of the back-end of a pipelined pro-
cessor. We manually define an ILA model PipeI as the specification of the design.
This specification can be verified against a detailed RTL implementation, using a
given refinement relation. We exported the Verilog model (including PipeI and
property assertions) and utilized Yosys and z3 for hardware verification. The
equivalence is checked modularly per instruction, and took 22 s in total for all
four instructions, as shown in Table 1.

4 Other ILAng Applications

Firmware/Hardware Co-verification. The ILA models program-visible hardware
behavior while abstracting out lower-level implementation details. This enables
scalable firmware/hardware co-verification, as demonstrated in our previous
work on security verification of firmware in industrial SoCs using ILAs [3].

Reasoning about Concurrency and Memory Consistency. The ILA model is an
operational model that captures program-visible state updates. When integrated
with axiomatic memory consistency models that specify orderings between mem-
ory operations, the transition relation defined in ILAs (Sect. 2.3) can be used to
reason about concurrent interactions between heterogeneous components [8].

Data Race Checking of GPU Programs. Besides general-purpose processors and
accelerators, an ILA model has been synthesized for the nVidia GPU PTX
instruction set using the synthesis engine (Sect. 2.2) [7]. This model has then
been used for data race checking for GPU programs using the BMC utility
(Sect. 2.3).

References

1. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 44

2. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

3. Huang, B.Y., Ray, S., Gupta, A., Fung, J.M., Malik, S.: Formal security verification
of concurrent firmware in SoCs using instruction-level abstraction for hardware. In:
DAC, pp. 1–6 (2018)

4. Huang, B.Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., Malik, S.:
Instruction-Level Abstraction (ILA): a uniform specification for System-on-Chip
(SoC) verification. ACM TODAES 24(1), 10 (2018)

5. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: ICSE, pp. 215–224 (2010)

6. Subramanyan, P., Huang, B.Y., Vizel, Y., Gupta, A., Malik, S.: Template-based
parameterized synthesis of uniform instruction-level abstractions for SoC verifica-
tion. IEEE TCAD 37(8), 1692–1705 (2018)

https://doi.org/10.1007/3-540-58179-0_44
https://doi.org/10.1007/978-3-540-78800-3_24

ILAng: A Modeling and Verification Platform for SoCs Using ILAs 357

7. Xing, Y., Huang, B.Y., Gupta, A., Malik, S.: A formal instruction-level GPU model
for scalable verification. In: ICCAD, pp. 130–135 (2018)

8. Zhang, H., Trippel, C., Manerkar, Y.A., Gupta, A., Martonosi, M., Malik, S.: ILA-
MCM: integrating memory consistency models with instruction-level abstractions
for heterogeneous system-on-chip verification. In: FMCAD (2018)

9. Huang, B.-Y., Zhang, H., Gupta, A., Malik, S.: ILAng: A Modeling and Verification
Platform for SoCs using Instruction-Level Abstractions (artifact). Figshare (2019).
https://doi.org/10.6084/m9.figshare.7808960.v1

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.6084/m9.figshare.7808960.v1
http://creativecommons.org/licenses/by/4.0/

	ILAng: A Modeling and Verification Platform for SoCs Using Instruction-Level Abstractions
	1 Introduction
	2 The ILAng Platform
	2.1 Background
	2.2 Constructing ILAs
	2.3 Verification Using ILAs
	2.4 Generating Verification Targets

	3 Tutorial Case Studies
	3.1 Advanced Encryption Standard (AES)
	3.2 A Simple Instruction Execution Pipeline

	4 Other ILAng Applications
	References

