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ABSTRACT
This paper describes a methodology for system-level security veri-
fication of modern Systems-on-Chip (SoC) designs. These designs
comprise interacting firmware and hardware modules which makes
verification particularly challenging. These challenges relate to (i)
specifying security verification properties, and (ii) verifying these
properties across firmware and hardware. We address the latter
through raising the level of abstraction of the hardware modules
to be similar to that of instructions in software/firmware. This ab-
straction, referred to as an instruction-level abstraction (ILA), plays
a similar role to the instruction set architecture (ISA) definition for
general purpose processors and enables high-level analysis of SoC
firmware. In particular, the ILA can be used instead of the cycle-
accurate bit-precise hardware implementation for scalable verifica-
tion of system-level security properties in SoCs.

We introduce techniques to semi-automatically synthesize the
ILA using a template abstraction and directed simulations of the
SoC hardware. We describe techniques to ensure that the ILA is a
correct abstraction of the underlying hardware implementation. We
then show how the ILA can be used for SoC security verification
by designing a specification language for security properties and an
algorithm based on symbolic execution to verify these properties.
Our case studies apply ILA-based verification to an example SoC
built out of open source components as well as part of a commer-
cial SoC. The methodology discovers several bugs in the hardware
implementation, simulators and firmware.

CCS Concepts
•Security and privacy→ Security in hardware; Logic and ver-
ification; •Hardware→ Functional verification;
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1 Introduction
Today’s integrated circuits are complex Systems-on-Chip (SoC)
devices consisting of multiple programmable cores, accelerators,
sensors and I/O devices [23, 25]. Specialized firmware executes
on the programmable cores and orchestrates the operation of vari-
ous accelerators and the functionality of the system is implemented
by this combination of hardware and firmware. To verify that the
system-level security requirements of SoCs are met, we need to an-
alyze both hardware and firmware as well as the hardware/firmware
interface. Clearly, bugs can exist in the hardware or firmware them-
selves, but some bugs may also be due to incorrect assumptions
made by hardware/firmware about the other component.

For a specific example, consider the runtime binary authentica-
tion protocol discussed by Krstic et al. [15] The objective of the
protocol is to read a binary from an I/O device, verify it is signed
by a trusted RSA public key, and if so, load the binary into local
memory for execution. Krstic et al. demonstrate that such a pro-
tocol is vulnerable to various attacks; e.g., a malicious entity may
modify the loaded binary after its signature is verified, but before
it is loaded for execution. To prevent this, firmware needs to con-
figure the memory management unit (MMU) to “lock” the pages
containing the binary during and after signature verification. Veri-
fying that this protection works requires precise specification of the
hardware/firmware interface for the MMU, ensuring that hardware
correctly implements the protection, and verifying that firmware
sets the MMU configuration correctly. A mistake in any of these
steps could violate the security requirements of the SoC.

The above example demonstrates the need for verification that
analyzes the hardware and firmware together. Unfortunately, for-
mal verification of the cycle-accurate and bit-precise register trans-
fer level (RTL) hardware description along with the firmware is not
feasible for even small SoCs due to scalability limitations of formal
tools. And as we argue above, verifying hardware and firmware
separately can miss bugs at the hardware/firmware interface.

1.1 Challenges in SoC Security Verification
Scalable co-verification of hardware and firmware in SoCs requires
the use of abstractions of SoC hardware instead of the bit-precise
and cycle-accurate RTL description. Such abstractions omit low-
level microarchitectural details, thus enabling formal analysis.

1.1.1 Challenges in Constructing Abstractions: Although the
idea of constructing abstractions for SoC verification is promising
and has been proposed by past work [20, 33, 34], there are three
challenges in applying this in practice. First, for an abstraction
to be generally useful, it must all capture all firmware/hardware
interactions as well as updates to all firmware-visible states. We
argue that manually constructing an abstraction that captures all of
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these details is both error-prone and tedious.
Completeness of an abstraction is extremely important for secu-

rity verification. Finding security vulnerabilities requires reasoning
about all inputs and states of the system including invalid/illegal in-
puts. For instance, [28] describes a bug affecting certain misaligned
store instructions in a commercial SoC. A misaligned store instruc-
tion will cause an exception and therefore should not be executed
by a well-behaved program. However, malicious code may specif-
ically execute this instruction in order to exploit the above bug and
corrupt MMU state. If verification were limited to “legal” inputs
and states, or if an abstraction did not precisely model the behavior
under illegal inputs, such violations will be missed.

Abstraction soundness is also very important. If the abstraction
does not accurately capture of hardware behavior, proofs of system-
level properties made using the abstraction are invalid.

1.1.2 Specifying Security Properties: Another challenge is prop-
erty specification. Commonly-used property specifications based
on temporal logics – such has linear temporal logic (LTL) and
computation tree logic (CTL) – cannot express the security require-
ments of confidentiality and availability [17]. Confidentiality and
integrity can be specified using information flow properties.

State-of-the-art techniques for verifying information flow prop-
erties are based on dynamic taint analysis and secure type sys-
tems [2, 14, 19, 21, 24, 26]. Dynamic taint analysis cannot system-
atically search over all possible inputs and states while new lan-
guages with secure type systems cannot verify existing and legacy
firmware. Adoption of new programming languages is also compli-
cated by the fact that significant parts of firmware are still written
in assembly language. These reasons point to the need for tools that
can perform exhaustive analysis of information flow properties on
binary code.

1.2 SoC Verification Using Instruction-Level
Abstractions

In this paper, we introduce a principled technique for the construc-
tion of abstractions for verification of system-level security proper-
ties in SoCs. The insight underlying our work is that firmware can
only view changes in system state at the granularity of instructions.
Therefore, it is sufficient to construct an abstraction which models
hardware components of the SoC at this granularity. We call this
an instruction-level abstraction (ILA) [30].

1.2.1 ILA Synthesis and Verification: To help easily construct
the abstraction in a semi-automated manner, we build on recent
progress in syntax-guided synthesis [1, 12]. Instead of manual con-
struction of the complete ILA, the verification engineer constructs a
template abstraction, which can be regarded as an abstraction with
“holes.” Our synthesis framework fills in the “holes” through di-
rected simulation of hardware components.

A key advantage of our methodology is that the ILA can be veri-
fied to be a correct over-approximation of the hardware implemen-
tation. This uses model checking and ensures the ILA accurately
captures the behavior of the RTL description. When model check-
ing is complete and all properties are verified, we have a strong
guarantee that all properties proven using the ILA are valid.

1.2.2 Security Verification Using the ILA: To address the prob-
lem of security property specification, we introduce a specification
language for information flow properties of firmware. These prop-
erties specify that information cannot “flow” from a given source to
a given destination and can be used to verify confidentiality when
the source is a secret and the destination is any untrusted location.
Integrity can be verified with if the source is an untrusted location
and the destination is a sensitive firmware register.

Using the ILA as a formal model of the underlying hardware,
we introduce an algorithm based on symbolic execution to verify
these information flow properties. The algorithm exhaustively ex-
plores all paths in the program and creates symbolic expressions
corresponding to the computation along each path. It then uses a
constraint solver to check whether two different values at the source
can result in different values at the destination. If yes, it means in-
formation flow can occur from source to destination because the
destination value depends on the source. This means the property
is violated. If such values cannot be found for the source, the prop-
erty holds for this particular path.

1.2.3 Summarizing ILA-based Verification: An overview of the
complete methodology is shown in Figure 1. ILA synthesis, shown
in Figure 1(a), enables semi-automatic synthesis of the ILA from a
template abstraction. Verification of the ILA against the implemen-
tation is shown in Figure 1(b) while use of ILA to verify security
properties is shown in Figure 1(c).

2 Instruction-Level Abstractions
In this section, we describe what an instruction-level abstraction is,
how it can be synthesized, techniques for verifying the correctness
of an ILA and an overview of our experimental results related to
constructing and verifying ILAs. As we are limited by space, this
section provides only a brief overview of each of these topics. A
detailed and formal description of the algorithms and methodology
may be found in [30].

2.1 ILA Definition
An instruction-level abstraction (ILA) is an abstraction that cap-
tures the firmware-visible hardware behavior in the context of an
SoC. Typically, accelerators and I/O devices on an SoC interact
with firmware through memory-mapped I/O (MMIO). Firmware
reads and writes to MMIO are commands/requests sent from firm-



ware to an accelerator. Each command either sets a particular con-
figuration or requests the accelerator to perform a certain operation.

The key insight is to view MMIO reads/writes as part of an ex-
tended instruction set architecture (ISA) specification, referred to
as an ILA. For example, in an AES accelerator, an MMIO write to
the Start register corresponds to the StartEncryption instruc-
tion. The bit-pattern for the write: the write-enable signal and the
address of the register form the opcode for this “instruction.”

The ILA models the effects of its abstracted “instructions” much
like an ISA. It specifies the computation performed by each in-
struction and what updates to architectural state will occur. For
ILAs, the architectural state now includes all software-visible state
that is accessible to its execution in the system, including memory-
mapped registers, shared memory buffers, accelerator scratchpads,
etc. For example, in the accelerator from [30] implementing the
SHA-1 hashing algorithm, the ComputeHash instruction reads the
source data from memory, computes its hash and writes this result
back to memory. The location of this instruction’s input and output
data in memory is set by previous configuration instructions.

2.2 ILA Synthesis
For ILAs to be useful, one must be able to generate them correctly
and preferably automatically. Due to the prevalent use of third-
party component IPs, SoC hardware blocks often exist before the
ILA is constructed, and so ILAs need to be constructed post hoc for
existing accelerators and I/Os. To address the error-prone and te-
dious aspects of this construction, we have developed an algorithm
for template-based synthesis of ILAs.

Instead of manual construction, ILAs can be synthesized from
partial descriptions referred to as template abstractions using tech-
niques drawn from program synthesis [1, 12]. The synthesis algo-
rithm is able to “fill-in-the-blanks” in an incomplete abstraction by
using data obtained from directed simulations of the accelerator.

2.2.1 Template Abstraction: Figure 2 shows a pedagogical ex-
ample of ILA synthesis for a very simple ALU-based processor.
Notice that the template abstraction does not specify low-level de-
tails such as the mapping between opcodes and operations, the
bitfields in the opcodes which correspond to source registers and
bitfields which correspond to immediate values, and so on. The
template uses one of the synthesis primitives introduced in [30]:
the choice operator. This operator tells the synthesis tool that
the result computed by the instruction is one of the operands of
the choice operator and the synthesis algorithm must use directed
simulations to figure out which one it is. We introduced two more
synthesis primitives in [30] and these operators can be nested or
cascaded to arbitrary depths to form powerful synthesis constructs.

2.2.2 Synthesis Algorithm: Since the template abstraction is a
partial description, it describes not one ILA but a family of ILAs.
The intuition behind the synthesis algorithm is to pick some two
different ILAs in this family and use a constraint solver to find a
distinguishing input for which the behavior of these two ILAs is
different. Once the distinguishing input is found, we can use the
simulator to find the “correct” output for this input and rule out at
least one of these two ILAs. In the next iteration, we repeat the
above process, but this time we find distinguishing inputs among
ILAs that are consistent with the input/output behavior we observed
in the first iteration. This process repeats until no more distinguish-
ing inputs can be found and we have an ILA consistent with the
input/output behavior observed thus far.

2.3 ILA Verification
Once an ILA has been synthesized, its it is important to ensure that
it is correct and is an accurate overapproximation of hardware im-
plementation behavior. These checks are bidirectional; they can
either be used to check that the ILA itself was correctly synthe-
sized, or they can be used to verify that RTL description of hard-
ware block abides by the ILA. We have introduced a methodology
and a set of tools which can be used to ensure that the behavior of
an ILA matches the RTL [30]. The approach requires specifying a
set of refinement relations which “connect” the behavior of the ILA
with the behavior of the RTL in terms of which state values need to
match and when [13, 18]. A model checker is then used to verify
that the refinement relations hold.

2.4 Practical Case Study
This section describes the evaluation methodology, the example
SoC used as a case study, and then briefly describes the synthesis
and verification results.

2.4.1 Methodology: The template-based synthesis framework was
implemented as a Python library using the Z3 SMT solver [7]. A
modified version of Yosys was used to synthesize netlists from be-
havioral Verilog [32]. We used ABC for model checking [3]. The
synthesis framework, template abstractions, synthesized ILA, and
other experimental artifacts are available online [8].

2.4.2 Example SoC Structure: Experiments were conducted on
an example SoC constructed from open source components con-
taining the 8051 microcontroller and two cryptographic accelera-
tors. One accelerator implements encryption/decryption using the
Advanced Encryption Standard (AES) while the other implements
the SHA-1 cryptographic hash function [11, 27]. The RTL de-
scription of the 8051 is from OpenCores.org [31]. We also used
i8051sim for instruction-level simulations of the 8051 [16].

2.4.3 Summary of Synthesis Results: As an indication of the
effort involved in building the model, the size of the template ILA
for the 8051 is about 800 lines, while the simulator is about 3000
lines of C++ code and the RTL is about 10,000 lines of Verilog
code. The template ILA for the accelerator is was about 600 lines
of Python code. These numbers demonstrate that the template ILA
can be written with relatively little effort. Execution time for var-
ious elements of architectural state ranges between a few seconds
to an hour, with most runs completing in just a few seconds. ILA
synthesis found 5 bugs in i8051sim.

2.4.4 Typical ILAs: Tables 1 and 2 show “instructions” in the
ILAs for the accelerators. Firmware first configures the accelerator
with the appropriate instructions and then starts operation with the
StartEncryption and StartHash instructions. It can then poll
for completion using the GetStatus instruction.

Instruction Description of operation
Rd/Wr DataAddr Get/set the address of data to encrypt.
Rd/Wr DataLen Get/set the length of data to encrypt.
Rd/Wr Key0 <index> Get/set specified byte of key0.
Rd/Wr Key1 <index> Get/set specified byte of key1.
Rd/Wr Ctr <index> Get/set specified byte of counter.
Rd/Wr KeySel Get/set the current key (key0/key1).
StartEncryption Start the encryption state machine.
GetStatus Poll for completion.

Table 1: ILA instructions for AES accelerator.



switch (opcode)
case 00:  ALU_RES = R0 + IMM;
case 01:  ALU_RES = R1 + IMM;
case 02:  ALU_RES = R2 + IMM;
…
case FF:  ALU_RES = R7 – R0

}

switch (opcode)
case 00:  ALU_RES = R0 + IMM;
case 01:  ALU_RES = R1 + IMM;
case 02:  ALU_RES = R2 + IMM;
…
case FF:  ALU_RES = R7 – R0

}

SRC1 = choice [R0 … R7, IMM]
SRC2 = choice [R0 … R7, IMM]
ADD_RES = SRC1 + SRC2
SUB_RES = SRC1 – SRC2
INC_RES = SRC1 + 1
...
ALU_RES = choice [ADD_RES, 

SUB_RES, … ]

SRC1 = choice [R0 … R7, IMM]
SRC2 = choice [R0 … R7, IMM]
ADD_RES = SRC1 + SRC2
SUB_RES = SRC1 – SRC2
INC_RES = SRC1 + 1
...
ALU_RES = choice [ADD_RES, 

SUB_RES, … ]
R0-R7R0-R7

ALUALU

opcodeopcode

op

imm

(a) Simple ALU (b) Template ILA (c) ILA

Figure 2: Pedagogical Example of a Template Abstraction and corresponding ILA

Instruction Description of operation
Rd/Wr DataInputAddr Get/set address of data to be hashed.
Rd/Wr DataLength Get/set length of data to be hashed.
Rd/Wr DataOuptutAddr Get/set the address of output.
StartHash Start the SHA1 state machine.
GetStatus Poll for completion.

Table 2: ILA instructions for SHA1 accelerator.

2.4.5 Summary of Verification Results: We generated Verilog
“golden models” from the ILAs and defined a set of refinement
relations specifying that the the golden models were equivalent to
the RTL. We then used bounded and unbounded model checking to
verify these refinement relations. This process found 6 bugs in the
RTL description of the 8051 microcontroller from OpenCores.org.

3 Security Verification Using ILAs
The ILA is a complete formal specification of hardware behavior
and enables scalable system-level verification. Firmware that in-
teracts with accelerators and I/O devices can now be analyzed in
terms of firmware-visible behavior as specified by the ILA instead
of ad hoc manually constructed models, or at the other extreme,
very detailed bit-precise cycle-accurate RTL descriptions.

In this section, we describe how ILAs can be used to verify con-
fidentiality and integrity properties of firmware using symbolic ex-
ecution. We first describe a specification language for firmware se-
curity properties, briefly provide an overview of an algorithm based
on symbolic execution for verifying these properties and then show
experimental results. Due to limited space, this section provides
only a brief overview of this work. Details may be found in [29].

3.1 Specifying Information Flow Properties
The property specification language for firmware security prop-
erties is based on the following insights. First, security require-
ments such as confidentiality and integrity are essentially state-
ments about information flow. These express the requirement that
either a firmware secret must not “flow” to an untrusted value (con-
fidentiality), or an untrusted value must not “flow” to a sensitive
asset (integrity). Note such properties cannot be expressed using
specification languages based on temporal logic [17].

Second, almost all interesting firmware security assets, such as
secret keys, sensitive configuration registers and untrusted input
registers are accessed through memory-mapped I/O (MMIO). There-
fore, firmware address ranges and architectural registers are first
class entities in the property specification language.

Third, a mechanism for declassification is required [22]. This
allows information flow when certain conditions hold during exe-
cution; information flow is disallowed if these do not hold.

Based on the above requirements, we introduce a specification
language for information flow properties consisting of:

1. A src which is a range of firmware memory addresses.
2. A predicate srcpred associated with the source which spec-

ifies when the data at src is valid. For example, we may
allow a register to be programmed from an input port during
the boot process, but not afterwards with the predicate ¬boot.

3. A dst which is an element of the ILA state.
4. A predicate dstpred for dstwhich specifies when data at dst

is valid similar to (2) above.
The property holds if data read from src when srcpred=1 never

influences a value written to dst when dstpred=1. srcpred and
dstpred are evaluated at the time of the read and write respectively.

3.2 Verifying Information Flow Properties
This section provides an intuitive description of how information
flow properties can be verified using symbolic execution.

3.2.1 Overview of Algorithm: Intuitively, when verifying a in-
formation flow property from src to dst, the algorithm attempts to
answer the following question: can some two different values at src
result in different values at dst? If so, then information does flow
from src to dst. If not, then dst is not influenced by src and the
property holds. The algorithm poses this question to a constraint
solver, and this allows us to consider all possible values for src and
dst on every path in the program.

The algorithm performs a depth-first search (DFS) of all reach-
able instructions. Two main enhancements over past symbolic ex-
ecution algorithms enable verification of information flow proper-
ties in SoCs. First, the engine maintains two symbolic copies of the
state of the program along the path that is being executed allow-
ing us to test whether assigning different values to src results in
different values at dst. The other enhancement is handling MMIO
instructions using selective symbolic execution.

3.2.2 Example of Algorithm Execution: To understand the al-
gorithm, consider its execution on the code shown in Figure 3.1
The property states that the untrusted value r1 must not influence
the value of IO_REG. Suppose, due to a typo N=3 instead of the cor-
rect value 2. The symbolic state computed by the algorithm when
it reaches the assignment to IO_REG would be as follows:

1We show the algorithm in C-like pseudocode to make understand-
ing easier but the analysis is done on binary code.



#define N 3 // should be 2
uint8_t tbl[] = { 1, 1 }; // address of tbl = 0x100
uint8_t data = 3; // &data=0x102
uint8_t IO_REG = 1; // &IO_REG=0x200.

void foo(int r1) {
if (r1 < 0 || r1 >= N) return;
IO_REG = tbl[r1];

}

Figure 3: Integrity property example: src=r1, dst=dataout,
srcpred=true and dstpred=memaddr = 0x200 ∧ memop = WR.

P1 = ¬(x1 < 0 ∨ x1 ≥ 3) P2 = ¬(x2 < 0 ∨ x2 ≥ 3)
dataout1 =M1[0x100 + x1] dataout2 =M2[0x100 + x2]
M1 =M2 = [0x100 &→ 1, 0x101 &→ 1, 0x102 &→ 3, . . . ]
memaddr1 = memaddr2 = 0x200
memop1 = memop2 = WR

In the above, x1 and x2 are the new variables created to represent
the untrusted value r1. For each variable, the superscripts 1 and 2
refer to the values of these variables in the corresponding “copies”
of the program state. P1 and P2 are path conditions that determine
the constraints under which this particular path is taken. M1 and
M2 are represent memory state.M1[0x100+x1] refers to the result
of reading address 0x100+x1 from the memory. memaddr, memop,
dataout are respectively the address, type and data being written by
the current memory operation.

When the solver evaluates whether dataout1 ! dataout2, P1, P2,
srcpred and dstpred are all satisfiable, it will find x1 = 1, x2 = 2
and report this error. Once we fix the bug and N=2, then (P1, P2) =
(x1 ≥ 0 ∧ x1 < 2, x2 ≥ 0 ∧ x2 < 2). Now it is not possible make
dataout1 ! dataout2 while satisfying P1 and P2, so the algorithm
will not report in an error.

Now let us consider a different property. Suppose src is data,
while dst and dstpred are the same as before. This property states
that the secret value data must not influence untrusted register
IO_REG. Clearly, a violation exists if N=3 and this is detected.

3.3 Evaluation
We evaluated our approach by examining part of the firmware of
an upcoming commercial phone/tablet SoC. The SoC consists of
a number of IPs for various functions such as display, camera,
touch sensing, etc. This evaluation examined a single component
IP, called the PTIP which is involved in security sensitive “flows”
such as secure boot. It contains a proprietary 32-bit microcontroller
which executes the firmware. The firmware interacts with the other
IPs in the SoC through hardware registers accessed using MMIO.

3.3.1 Methodology: We synthesized an instruction-level abstrac-
tion (ILA) of the PTIP microcontroller and then used the ILA to
generate a symbolic execution engine. Z3 v4.3.2 was the con-
straint solver [7] used. This symbolic execution engine was in-
tegrated with a pre-existing simulator for this microcontroller to
model MMIO reads and writes to other parts of the SoC.

3.3.2 Security Objectives: The PTIP firmware interacts with sys-
tem software, devices drivers and other untrusted IPs. Since these
entities, especially the system software and drivers, may be com-
promised by malware, these are all untrusted. We explored two
main security objectives as part of the evaluation. First, the PTIP
memory holds a sensitive cryptographic key called the IPKEY. We
verify that these untrusted entities cannot not access IPKEY. Sec-
ond, we verify control-flow integrity of the PTIP firmware. Three

representative information flow properties we formulated to capture
these security requirements.

The total size of the PTIP firmware is approximately a few tens
of thousands of static instructions. Due to limited time, this eval-
uation focused on a set of message handler functions which send
and receive commands/messages from the (untrusted) system soft-
ware, drivers and other IPs. The size of these handler functions was
approximately several hundred static instructions.

3.3.3 Summary of Verification Results: In terms of scalability,
the symbolic execution engine could explore up to about half a mil-
lion instructions within the assigned time limit of 30 minutes. This
was sufficient for exploring all possible paths in 4 out of 6 handlers
examined in the evaluation. Full exploration of paths could not
be completed for the other two handlers. While these results are
promising and show that some real-world firmware can be exam-
ined, further improvements in scalability are likely possible with
more sophisticated analysis techniques.

The PTIP firmware had previously undergone simulation-based
testing and manual code review. However, we were still able to
identify a tricky security bug that could lead to IPKEY exposure.
Symbolic analysis involving reasoning over all possible input val-
ues was essential in helping discover this bug.

4 Discussion and Related Work
This section briefly describes other uses of the ILA and connections
to related research.

4.1 Discussion
The ILA is a complete formal specification of hardware behavior
that precisely defines the hardware/software interface. In this paper,
we showed how the ILA can be used to verify security properties of
firmware using symbolic execution. However, the ILA-based ver-
ification methodology is helpful in enabling many diverse design
and verification tasks.

4.1.1 ILA-Based Design: Since the ILA precisely defines the
firmware/hardware interface, it enables portability among SoCs with
slightly different accelerator and I/O devices. Firmware code that
targets one ILA can be “translated” into code that targets an accel-
erator that implements a different ILA.

Similarly, the ILA enables synthesis/design optimizations to make
hardware changes “under-the-hood” while retaining firmware com-
patibility. For example, one chip generation might implement only
one substep of an important routine in hardware, while the next
chip generation might implement the entire important routine as
a single hardware accelerator. The ILA enables us to make such
changes with the guarantee that system-level security and function-
ality requirements are preserved.

4.1.2 ILA-based Verification: On the verification side, ILAs can
verify equivalence of two accelerators that implement the same
firmware-visible behavior. They also offer various avenues for for-
mal analysis of system-level properties. In this paper, we described
symbolic execution, but other techniques such as bounded and un-
bounded model checking as well as interactive theorem proving are
also possible using an ILA. From the security point-of-view, this
paper introduced a specification language for confidentiality and
integrity properties. Extending the specification language to cover
other security requirements such as availability and non-repudiation
and using ILA-based verification to analyze these properties is an-
other promising avenue for further research.



4.2 Related Work
There is a rich body of literature studying synthesis and verifica-
tion. We survey some of the most closely related work below.

4.2.1 Synthesizing Abstractions: Our work builds on recent pro-
gress in syntax-guided synthesis which is surveyed in [1]. Our syn-
thesis algorithm is based on oracle-guided synthesis from [12]. Our
contribution is the use of synthesis for constructing abstractions of
SoC hardware. Also related is the work of Godefroid et al. [10]
They synthesize a model for a subset of the x86 ALU instructions
using I/O samples. In comparison, our contributions are strong
guarantees about the correctness of the synthesized abstraction and
general abstractions for SoC hardware, not just ALU outputs.

4.2.2 SoC Verification: Refinement relations, used in proving
the abstraction and the implementation match are from [13, 18].
One approach to compositional SoC verification is by Xie et al. [33,
34] They suggest manually constructing a “bridge” specification
that along with a set of hardware properties can be used to verify
software components that rely on these properties. Our methodol-
ogy makes it easy to construct the equivalent of the bridge specifi-
cations. Most importantly, it ensures correctness of the abstraction.

4.2.3 Symbolic Execution and Taint Analysis: The DART and
KLEE projects are the precursors of subsequent work in symbolic
execution [4, 9]. They combined modern constraint solvers and dy-
namic analysis to generate tests for software programs. Subsequent
projects, such as Fie and S 2E, have applied symbolic execution to
firmware and low-level software [5, 6]. The most important dif-
ference between these frameworks and our work is that they only
verify safety properties, not confidentiality and integrity.

A large body of work also studies dynamic taint analysis (DTA)
[2, 14, 24, 26]. DTA suffers from both false positives and false neg-
atives due to the problems of under- and over-tainting. Our work
does not result in false positives. An overview of DTA and sym-
bolic execution is presented in [24]. We show how symbolic exe-
cution can be used to verify information flow; this is missing from
[24] which treats DTA and symbolic execution separately.

5 Conclusion
In this paper, we described a principled methodology for security
verification of SoCs. The first component of the methodology is
the construction of Instruction-Level Abstractions (ILAs) of SoC
hardware components. The ILA of a hardware component is an
abstraction that treats commands sent from firmware to the com-
ponent as the equivalent of “instructions” and models all firmware-
visible state updates due to these instructions. We described how
ILAs can be semi-automatically synthesized and verified to be cor-
rect abstractions of hardware components.

The second component of the methodology is using the ILA for
the verification of system-level security properties. We introduced
a property specification language that can express requirements like
confidentiality and integrity and an algorithm based on symbolic
execution to verify these properties. Experimentally, we found that
both components – ILA construction and verification using sym-
bolic execution – helped find several bugs in both an SoC built out
of open source components and parts of a commercial SoC design.
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